Quiz 3#3:

$$f(x,y) = ye^{xy}$$

Tangent plane @ $(x,y) = [0,1)$.
Common mistale was incorrect differentiation,
often for fy.
 $f_y(x,y) = e^{xy} + ye^{xy}x$
You may remember the tan plane eqn as
 $z = z_0 + f_x \cdot (x - x_0) + f_y \cdot (y - y_0)$.
 $f_x(x_0, y_0)$

A mistake I saw was using
$$f_{x}(x,y)$$

when supposed to use $f_{x}(x_{0},y_{0})$.
One then gets
 $\Xi = 1 + (y^{2}e^{xy})(x-0)$
 $+ (e^{xy} + xye^{xy})(y-1)$
This is definitely not a plane! Plus it's
way worse to compute than $f(x,y)$ too...

Two ways of writing two plane equ:

$$z = f(x_{0}, y_{0}) + f_{x}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0})$$

$$F_{x}(x_{0}, y_{0}, z_{0})(x - x_{0}) + F_{y}(x_{0}, y_{0}, z_{0})(y - y_{0}) \quad (X)$$

$$+ F_{y}(x_{0}, y_{0}, z_{0})(y - y_{0}) \quad (X)$$

$$+ F_{z}(x_{0}, y_{0}, z_{0})(z - z_{0}) = 0$$
This can be written as
$$\nabla F(\vec{r}_{0}) \cdot (\vec{r} - \vec{r}_{0}) = 0$$

≏ᠿ

A mistake Isaw: ppl used (X) with F(x,y,z) = yexy. Correction: since ne are booking @ Z=rexy, rearrange to get (ye^{xy} - z)= 0 F(x,y,z)

 $Q2^{\#}1:$ What kind of object does $(\vec{r} - \langle 3, 0, 1 \rangle) \cdot \langle 2, -1, 7 \rangle = 0$ describe? (F-r.).n=0 [(2,-1,7) (3,0,1)

What does $(\vec{r}-\langle 3,0,1\rangle)\times\langle 2,-1,7\rangle=\vec{0}$ describe? F This is a line through (3,0,1) (2,-1,1) 13,0,17 in the direction $\langle 2, -1, 7 \rangle$

Does this go through (0,0,0)? $S_{1}1: 3+2t=0$ 0+(-1)+2) 1+72=0 No solution. So 2: (3,0,1) and (2,-1,7) are not parallel, so no.

14.6 #29 The direction of fastest change is

$$\nabla f = \langle 2x - 2, Hy - H \rangle$$

and we need this direction to be same
as $1+j = \langle 1, 1 \rangle$, so we need
 $\nabla f = c \langle 1, 1 \rangle$
 $positive real #$
 $\begin{cases} 2x - 2 = c \\ 4y - 4 = c \end{cases}$
You will find infinity many solutions.
(they should form a ray).

14.5#47 U $Z = \frac{1}{x} \left[f(x - y) + q(x + y) \right]$ Venty $\partial^2 z$ $\begin{pmatrix} 2 \\ \chi^2 \\ \frac{\partial z}{\partial \chi} \end{pmatrix}$ XC 9 = x² 2y2 2 N u=x-4 y=xty X=X 4 × ۶ N Ч χ

 $\partial_{z} = \frac{1}{x} f(u)(-1) + \frac{1}{x} g(v)(1)$ $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) = (-1)\left(\frac{1}{\chi}f'(u)(-1)\right)$ $+\frac{1}{x}g''(x)(1)$

Keep in mind e.g. f(u) is a function of u, which depends on x and y, So need chain rule to compute $\frac{d}{\partial y}(f'(u))$

e.g. to compute 2 2 ((X+y)) 2 y z = 2(x+y)(1)x y (though of course you could've done this directly as well.)