Quiz $3 * 3:$

$$
f(x, y)=y e^{x y}
$$

Tangent plane @ $(x, y)=(0,1)$.
Common mistake was incorrect differentiation, often for f_{y}.

$$
f_{y}(x, y)=e^{x y}+y e^{x y} x
$$

Yon may remember the tan plane eau as

$$
\begin{gathered}
z=z_{0}+f_{x} \cdot\left(x-x_{0}\right)+f_{y} \cdot\left(y-y_{0}\right) \\
f_{x}\left(x_{0}, y_{0}\right)
\end{gathered}
$$

$z=x^{2}+y^{2} \quad \begin{array}{r}x, y, z \\ \text { and the real numbers }\end{array}$ and this expresses a relationship between
them.
$f(x, y)=x^{2}+y^{2}$
f is a function $\mathbb{R}^{2} \rightarrow \mathbb{R}$
and this defines f on an arbitrary impart.
Note: $f(u, v)=u^{2}+v^{2}$ defines the exact
same function f.

A mistake I saw was using $f_{y}(x, y)$ when supposed to us $f_{x}\left(x_{0}, y_{0}\right)$.
Ore then gets

$$
\begin{aligned}
z=1 & +\left(y^{2} e^{x y}\right)(x-0) \\
& +\left(e^{x y}+x y e^{x y}\right)(y-1)
\end{aligned}
$$

This is definitely not a plane! Plus it's way worse to compute than $f(x, y)$ too...

Tho ways of writhen the plane ea:

$$
\begin{align*}
& z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) \\
&+f_{y}\left(x_{0}, y_{j}\right)\left(y-y_{0}\right) \\
& F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right) \\
&+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \quad(*) \tag{*}\\
&+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
\end{align*}
$$

This can be written as

$$
\nabla F\left(\vec{r}_{0}\right) \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 .
$$

A mistake $I_{\text {saw: }}$ pp used $(*$
with $F(x, y, z)=y e^{x y}$.
Correction: sine me are footing a $z=y e^{x y}$, rearrange to get
$y e^{x y}-z=0$
Y
$F(x, y, z)$

22\#1:
What kind of object does

$$
\frac{(\vec{r}-\langle 3,0,1\rangle) \cdot\langle 2,-1,7\rangle}{2(\vec{r}-\vec{r},) \cdot \hat{n}=0}=0
$$

describe?

What does

$$
(\vec{r}-\langle 3,0,1\rangle) \times\langle 2,-1,7\rangle=\overrightarrow{0}
$$

describe?

Does this go through $(0,0,0)$?
Sol 1:

$$
\begin{aligned}
& 3+2 t=0 \\
& 0+(-1) t=0 \\
& 1+7 t=0
\end{aligned}
$$

No solution.
Sol 2: $\langle 3,0,1\rangle$ and $\langle 2,-1,7\rangle$ are not parallel, 80 no.
14.6*29 The direction of Protest charge is 14.5 菁 47

$$
\nabla f=\langle 2 x-2,4 y-4\rangle
$$

and ne need this direction to be same as $\hat{\imath}+\hat{\jmath}=\langle 1, \overline{1}\rangle$, so we need

$$
\nabla f=c\langle 1,1\rangle
$$

$\psi_{\text {positive real } \# \text {. }}$.

$$
\left\{\begin{array}{l}
2 x-2=c \\
4 y-4=c
\end{array}\right.
$$

$y_{\text {on mill find in fixity many solutions. }}$ (they should) form a ray).

$$
z=\frac{1}{x}\left[f(x-y)+g \frac{v}{(x+y))]}\right.
$$

Vent

$$
\frac{\partial}{\partial x}\left(x^{2} \frac{\partial z}{\partial x}\right)=x^{2} \frac{\partial^{2} z}{\partial y^{2}}
$$

$$
\left.\begin{array}{rl}
\frac{\partial z}{\partial y} & =\frac{1}{x} f^{\prime}(u)(-1)
\end{array}+\frac{1}{x} \sqrt{g^{\prime}(v)}(1)\right) ~ \begin{aligned}
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) & =(-1)\left(\frac{1}{x} f^{\prime \prime}(u)(-1)\right) \\
& +\frac{1}{x} g^{\prime \prime}(v)(1)
\end{aligned}
$$

Kep p in mind eq, $f^{\prime}(u) x$ a function of a_{1} which deperess on x andy. So need chain rake to compute

$$
\frac{\partial}{\partial y}\left(f^{\prime}(u)\right) .
$$

$$
\begin{aligned}
& \text { e. . to corpus. } \left.u^{z}\right)^{z} \\
& \frac{\partial}{\partial y}\left((x+y)^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
=2(x+y) \tag{11}
\end{equation*}
$$

(theagh of cause yon could lye dine this directly as well.)

